Nuclear level lifetime measurements across varied ranges using the digital INGA at TIFR
This article highlights the significance of level lifetime measurements in nuclear structure studies that principally center on probing the myriad excitation phenomena exhibited by nuclei through evolving regimes of excitations in energy, angular momentum, and isospin. The same has been illustrated through discussions on some of the measurements undertaken using the Indian National Gamma Array (INGA) set up at the BARC-TIFR Pelletron LINAC Facility (PLF) in TIFR, Mumbai. The diverse ph
Rudrajyoti Palit & Rajarshi Raut
Neutron emission spectrometer in magnetic confinement fusion
Comprehensive neutron diagnostics have been developed and used to study magnetic confinement fusion plasmas. The neutron emission spectrometer is one of the most powerful tools for understanding fusion plasma physics. Neutron spectroscopy was originally developed to measure the fuel ion temperature in thermal plasmas. With the advent of fast ion heating, the role of neutron spectroscopy has evolved to deepen the understanding of fast ion confinement. Since neutrons are primarily produc
Siriyaporn Sangaroon, Kunihiro Ogawa & Mitsutaka Isobe
Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
To satisfy the needs of modern intelligent society for power supplies with long-endurance ability, Li-rich Mn-based layered oxides (LRMOs) are receiving much attention because of their ultrahigh capacity. However, their real-world implementation is hindered by the serious voltage decay, which results in a continuous decrease in energy density. The understanding on voltage decay still remains a mystery due to the complicated hybrid cationic-anionic redox and the serious surface-interfac
Huixian Xie, Jiacheng Xiao, Hongyi Chen, Boyang Zhang, Kwun Nam Hui, Shanqing Zhang, Chenyu Liu, Dong Luo & Zhan Lin
Wavelength multicasting quantum clock synchronization network
Quantum clock synchronization (QCS) can measure out the high-precision clock difference among distant users, which breaks through the standard quantum limit by employing the properties of quantum entanglement. Currently, the wavelength division multiplexed QCS network has been demonstrated with a spontaneous parametric down-conversion entangled photon source. In this paper, we propose a more efficient QCS network scheme with the wavelength multicasting entangled photon source, which ca
Jiaao Li, Hui Han, Xiaopeng Huang, Bangying Tang, Kai Guo, Jinquan Huang, Siyu Xiong, Wanrong Yu, Zhaojian Zhang, Junbo Yang, Bo Liu, Huan Chen & Zhenkun Lu
Non-equilibrium BCS-BEC crossover and unconventional FFLO superfluid in a strongly interacting driven-dissipative Fermi gas
We present a theoretical review of the recent progress in non-equilibrium BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics. As a paradigmatic example, we consider a strongly interacting driven-dissipative two-component Fermi gas where the non-equilibrium steady state is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with the system. As a powerful theoretical tool to deal with this system, we employ the Schw
Taira Kawamura & Yoji Ohashi
Competing few-body correlations in ultracold Fermi polarons
Polaron, a typical quasi-particle that describes a single impurity dressed with surrounding environment, serves as an ideal platform for bridging few- and many-body physics. In particular, different few-body correlations can compete with each other and lead to many intriguing phenomena. In this work, we review the recent progresses made in understanding few-body correlation effects in attractive Fermi polarons of ultracold gases. By adopting a unified variational ansatz that incorporat
Ruijin Liu & Xiaoling Cui
Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance
NASICON (Na\(_{1+x}\)Zr\(_2\)Si\(_x\)P\(_{3-x}\)O\(_{12}\)) is a well-established solid-state electrolyte, renowned for its high ionic conductivity and excellent chemical stability, rendering it a promising candidate for solid-state batteries. However, the intricate influence of ion doping on their performance has been a central focus of research, with existing studies often lacking comprehensive evaluation methods. This study introduces a deep-learning-based approach to efficiently ev
Zirui Zhao, Xiaoke Wang, Si Wu, Pengfei Zhou, Qian Zhao, Guanping Xu, Kaitong Sun & Hai-Feng Li
Yemilab, a new underground laboratory in Korea
In September 2022, Yemilab, a new underground laboratory, was finally completed in Jeongseon, Gangwon Province, South Korea. Situated at a depth of 1000 m, it boasts an exclusive experimental area of 3000 m2. Currently, preparations are in progress for the AMoRE-II experiment, which aims to investigate neutrinoless double beta decay, as well as for the COSINE-100 upgrade (COSINE-100U), a direct dark matter detection experiment. Both experiments are scheduled to commence in the second q
Yeongduk Kim & Hyun Su Lee
From the quantum breakdown model to the lattice gauge theory
The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in
Yu-Min Hu & Biao Lian
Progress in acoustic measurements and geoacoustic applications
Geoacoustic exploration is a rapidly evolving field investigating underground rock formations and sediment environments through acoustic waves. In this paper, we present a review of recent research progress, focusing on newly discovered physical phenomena, such as the reflection and refraction of acoustic waves at the interface between anisotropic rocks and between liquid and solid, the characteristics of electric-acoustic (and acoustic-electric) conversion of piezoelectric transducers
Lin Fa, Huiting Yang, Yuxiao Fa, Shuangshuang Meng, Jurong Bai, Yandong Zhang, Xiangrong Fang, Xiao Zou, Xinhao Cui, Yanli Wang & Meishan Zhao