Competing few-body correlations in ultracold Fermi polarons
Polaron, a typical quasi-particle that describes a single impurity dressed with surrounding environment, serves as an ideal platform for bridging few- and many-body physics. In particular, different few-body correlations can compete with each other and lead to many intriguing phenomena. In this work, we review the recent progresses made in understanding few-body correlation effects in attractive Fermi polarons of ultracold gases. By adopting a unified variational ansatz that incorporat
Ruijin Liu & Xiaoling Cui
Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance
NASICON (Na\(_{1+x}\)Zr\(_2\)Si\(_x\)P\(_{3-x}\)O\(_{12}\)) is a well-established solid-state electrolyte, renowned for its high ionic conductivity and excellent chemical stability, rendering it a promising candidate for solid-state batteries. However, the intricate influence of ion doping on their performance has been a central focus of research, with existing studies often lacking comprehensive evaluation methods. This study introduces a deep-learning-based approach to efficiently ev
Zirui Zhao, Xiaoke Wang, Si Wu, Pengfei Zhou, Qian Zhao, Guanping Xu, Kaitong Sun & Hai-Feng Li
Yemilab, a new underground laboratory in Korea
In September 2022, Yemilab, a new underground laboratory, was finally completed in Jeongseon, Gangwon Province, South Korea. Situated at a depth of 1000 m, it boasts an exclusive experimental area of 3000 m2. Currently, preparations are in progress for the AMoRE-II experiment, which aims to investigate neutrinoless double beta decay, as well as for the COSINE-100 upgrade (COSINE-100U), a direct dark matter detection experiment. Both experiments are scheduled to commence in the second q
Yeongduk Kim & Hyun Su Lee
From the quantum breakdown model to the lattice gauge theory
The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in
Yu-Min Hu & Biao Lian
Progress in acoustic measurements and geoacoustic applications
Geoacoustic exploration is a rapidly evolving field investigating underground rock formations and sediment environments through acoustic waves. In this paper, we present a review of recent research progress, focusing on newly discovered physical phenomena, such as the reflection and refraction of acoustic waves at the interface between anisotropic rocks and between liquid and solid, the characteristics of electric-acoustic (and acoustic-electric) conversion of piezoelectric transducers
Lin Fa, Huiting Yang, Yuxiao Fa, Shuangshuang Meng, Jurong Bai, Yandong Zhang, Xiangrong Fang, Xiao Zou, Xinhao Cui, Yanli Wang & Meishan Zhao
Encircling the Liouvillian exceptional points: a brief review
Exceptional points are the branch-point singularities of non-Hermitian Hamiltonians and have rich consequences in open-system dynamics. While the exceptional points and their critical phenomena are widely studied in the non-Hermitian settings without quantum jumps, they also emerge in open quantum systems depicted by the Lindblad master equations, wherein they are identified as the degeneracies in the Liouvillian eigenspectrum. These Liouvillian exceptional points often have distinct p
Konghao Sun & Wei Yi
Density functional theory study of two-dimensional hybrid organic-inorganic perovskites: frontier level alignment and chirality-induced spin splitting
Perovskites are a class of semiconductors initially recognized for their exceptional efficiency in solar cell applications. Subsequent research has revealed their diverse and attractive optoelectronic properties. Over the last decades, molecule-level engineering attempts toward the original three-dimensional (“3D”) perovskites have led to the emergence of two-dimensional (“2D”) layered crystals and introduced extensive compositional, structural, and electronic tunability through the in
Ruyi Song & Rundong Zhao
Environment-induced information scrambling transition with charge conservations
In generic closed quantum systems, the complexity of operators increases under time evolution governed by the Heisenberg equation, reflecting the scrambling of local quantum information. However, when systems interact with an external environment, the system-environment coupling allows operators to escape from the system, inducing a dynamical transition between the scrambling phase and the dissipative phase. This transition is known as the environment-induced information scrambling tra
Pengfei Zhang & Zhenhua Yu
The developments in carbon-modified graphitic carbon nitride for photoelectrochemical water splitting: a mini review
Graphitic carbon nitride (g-CN), as a potential photoelectrode for photoelectrochemical water splitting, has garnered significant research attention owing to its favorable attributes, including a suitable bandgap, abundant elemental composition, excellent thermal stability, and non-toxicity. However, the limited efficiency of visible light absorption and poor electrical conductivity of pure g-CN result in low photocurrent density and photocatalytic activity, falling short of meeting th
Yuewen Yang, Tingrui Xu & Ruiqin Zhang
Surface and bulk acoustic wave resonators based on aluminum nitride for bandpass filters
Bandpass filters with high frequency and wide bandwidth are indispensable parts of the fifth-generation telecommunication technologies, and currently, they are mainly based on surface and bulk acoustic wave resonators. Owing to its high mechanical strength, excellent stability at elevated temperatures, good thermal conductivity, and compatibility with complementary metal-oxide-semiconductor technology, aluminum nitride (AlN) becomes the primary piezoelectric material for high-frequency
Xian-Hu Zha, Jing-Ting Luo, Ran Tao & Chen Fu