Polaron, a typical quasi-particle that describes a single impurity dressed with surrounding environment, serves as an ideal platform for bridging few- and many-body physics. In particular, different few-body correlations can compete with each other and lead to many intriguing phenomena. In this work, we review the recent progresses made in understanding few-body correlation effects in attractive Fermi polarons of ultracold gases. By adopting a unified variational ansatz that incorporat
Ruijin Liu & Xiaoling Cui
NASICON (Na\(_{1+x}\)Zr\(_2\)Si\(_x\)P\(_{3-x}\)O\(_{12}\)) is a well-established solid-state electrolyte, renowned for its high ionic conductivity and excellent chemical stability, rendering it a promising candidate for solid-state batteries. However, the intricate influence of ion doping on their performance has been a central focus of research, with existing studies often lacking comprehensive evaluation methods. This study introduces a deep-learning-based approach to efficiently ev
Zirui Zhao, Xiaoke Wang, Si Wu, Pengfei Zhou, Qian Zhao, Guanping Xu, Kaitong Sun & Hai-Feng Li
In September 2022, Yemilab, a new underground laboratory, was finally completed in Jeongseon, Gangwon Province, South Korea. Situated at a depth of 1000 m, it boasts an exclusive experimental area of 3000 m2. Currently, preparations are in progress for the AMoRE-II experiment, which aims to investigate neutrinoless double beta decay, as well as for the COSINE-100 upgrade (COSINE-100U), a direct dark matter detection experiment. Both experiments are scheduled to commence in the second q
Yeongduk Kim & Hyun Su Lee
The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in
Yu-Min Hu & Biao Lian
Geoacoustic exploration is a rapidly evolving field investigating underground rock formations and sediment environments through acoustic waves. In this paper, we present a review of recent research progress, focusing on newly discovered physical phenomena, such as the reflection and refraction of acoustic waves at the interface between anisotropic rocks and between liquid and solid, the characteristics of electric-acoustic (and acoustic-electric) conversion of piezoelectric transducers
Lin Fa, Huiting Yang, Yuxiao Fa, Shuangshuang Meng, Jurong Bai, Yandong Zhang, Xiangrong Fang, Xiao Zou, Xinhao Cui, Yanli Wang & Meishan Zhao
Exceptional points are the branch-point singularities of non-Hermitian Hamiltonians and have rich consequences in open-system dynamics. While the exceptional points and their critical phenomena are widely studied in the non-Hermitian settings without quantum jumps, they also emerge in open quantum systems depicted by the Lindblad master equations, wherein they are identified as the degeneracies in the Liouvillian eigenspectrum. These Liouvillian exceptional points often have distinct p
Konghao Sun & Wei Yi
If you'd like to subscribe to the AAPPS Bulletin newsletter, enter your email below.