Geoacoustic exploration is a rapidly evolving field investigating underground rock formations and sediment environments through acoustic waves. In this paper, we present a review of recent research progress, focusing on newly discovered physical phenomena, such as the reflection and refraction of acoustic waves at the interface between anisotropic rocks and between liquid and solid, the characteristics of electric-acoustic (and acoustic-electric) conversion of piezoelectric transducers
Lin Fa, Huiting Yang, Yuxiao Fa, Shuangshuang Meng, Jurong Bai, Yandong Zhang, Xiangrong Fang, Xiao Zou, Xinhao Cui, Yanli Wang & Meishan Zhao
Exceptional points are the branch-point singularities of non-Hermitian Hamiltonians and have rich consequences in open-system dynamics. While the exceptional points and their critical phenomena are widely studied in the non-Hermitian settings without quantum jumps, they also emerge in open quantum systems depicted by the Lindblad master equations, wherein they are identified as the degeneracies in the Liouvillian eigenspectrum. These Liouvillian exceptional points often have distinct p
Konghao Sun & Wei Yi
Perovskites are a class of semiconductors initially recognized for their exceptional efficiency in solar cell applications. Subsequent research has revealed their diverse and attractive optoelectronic properties. Over the last decades, molecule-level engineering attempts toward the original three-dimensional (“3D”) perovskites have led to the emergence of two-dimensional (“2D”) layered crystals and introduced extensive compositional, structural, and electronic tunability through the in
Ruyi Song & Rundong Zhao
In generic closed quantum systems, the complexity of operators increases under time evolution governed by the Heisenberg equation, reflecting the scrambling of local quantum information. However, when systems interact with an external environment, the system-environment coupling allows operators to escape from the system, inducing a dynamical transition between the scrambling phase and the dissipative phase. This transition is known as the environment-induced information scrambling tra
Pengfei Zhang & Zhenhua Yu
Graphitic carbon nitride (g-CN), as a potential photoelectrode for photoelectrochemical water splitting, has garnered significant research attention owing to its favorable attributes, including a suitable bandgap, abundant elemental composition, excellent thermal stability, and non-toxicity. However, the limited efficiency of visible light absorption and poor electrical conductivity of pure g-CN result in low photocurrent density and photocatalytic activity, falling short of meeting th
Yuewen Yang, Tingrui Xu & Ruiqin Zhang
Bandpass filters with high frequency and wide bandwidth are indispensable parts of the fifth-generation telecommunication technologies, and currently, they are mainly based on surface and bulk acoustic wave resonators. Owing to its high mechanical strength, excellent stability at elevated temperatures, good thermal conductivity, and compatibility with complementary metal-oxide-semiconductor technology, aluminum nitride (AlN) becomes the primary piezoelectric material for high-frequency
Xian-Hu Zha, Jing-Ting Luo, Ran Tao & Chen Fu
If you'd like to subscribe to the AAPPS Bulletin newsletter, enter your email below.