
X.Y. Lü, Y. Wu, J. Johansson, H. Jing, J. Zhang, F. Nori, Squeezed optomechanics with phasematched amplification and dissipation. Phys. Rev. Lett. 114(9), 093602 (2015)

M. Asjad, S. Zippilli, D. Vitali, Suppression of stokes scattering and improved optomechanical cooling with squeezed light. Phys. Rev. A 94(5), 051801 (2016)

J.B. Clark, F. Lecocq, R.W. Simmonds, J. Aumentado, J.D. Teufel, Sideband cooling beyond the quantum backaction limit with squeezed light. Nature 541(7636), 191–195 (2017)

N. Didier, A. Kamal, W.D. Oliver, A. Blais, A.A. Clerk, Heisenberglimited qubit readout with twomode squeezed light. Phys. Rev. Lett. 115(9), 093604 (2015)

W. Qin, A. Miranowicz, P.B. Li, X.Y. Lü, J.Q. You, F. Nori, Exponentially enhanced lightmatter interaction, cooperativities, and steadystate entanglement using parametric amplification. Phys. Rev. Lett. 120(9), 093601 (2018)

Y.H. Chen, W. Qin, X. Wang, A. Miranowicz, F. Nori, Shortcuts to adiabaticity for the quantum rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett. 126(2), 023602 (2021)

W. Qin, V. Macrì, A. Miranowicz, S. Savasta, F. Nori, Emission of photon pairs by mechanical stimulation of the squeezed vacuum. Phys. Rev. A 100(6), 062501 (2019)

M. Asjad, N.E. Abari, S. Zippilli, D. Vitali, Optomechanical cooling with intracavity squeezed light. Opt. Express 27(22), 32427–32444 (2019)

W. Qin, A. Miranowicz, H. Jing, F. Nori, Generating longlived macroscopically distinct superposition states in atomic ensembles. Phys. Rev. Lett. 127(9), 093602 (2021)

H.S. Zhong, H. Wang, Y.H. Deng, M.C. Chen, L.C. Peng, Y.H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu et al., Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

H.S. Zhong, Y.H. Deng, J. Qin, H. Wang, M.C. Chen, L.C. Peng, Y.H. Luo, D. Wu, S.Q. Gong, H. Su et al., Phaseprogrammable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127(18), 180502 (2021)

W. Qin, A. Miranowicz, F. Nori, Beating the 3 db limit for intracavity squeezing and its application to nondemolition qubit readout. (2022). arXiv preprint arXiv:2203.06892

S.C. Burd, R. Srinivas, H.M. Knaack, W. Ge, A.C. Wilson, D.J. Wineland, D. Leibfried, J.J. Bollinger, D. Allcock, D. Slichter, Quantum amplification of bosonmediated interactions. Nat. Phys. 17(8), 898–902 (2021)

W. Qin, Y.H. Chen, X. Wang, A. Miranowicz, F. Nori, Strong spin squeezing induced by weak squeezing of light inside a cavity. Nanophotonics 9(16), 4853–4868 (2020)

R. Owen, J. Brink, Y. Chen, J.D. Kaplan, G. Lovelace, K.D. Matthews, D.A. Nichols, M.A. Scheel, F. Zhang, A. Zimmerman, K.S. Thorne, Framedragging vortexes and tidal tendexes attached to colliding black holes: visualizing the curvature of spacetime. Phys. Rev. Lett. 106(15), 151101 (2011). https://doi.org/10.1103/PhysRevLett.106.151101

GWINC: Gravitational Wave Interferometer Noise Calculator. http://lhocds.ligowa.caltech.edu:8000/advligo/GWINC. V1 default parameters

J.M. Hensley, A. Peters, S. Chu, Active low frequency vertical vibration isolation. Rev. Sci. Instrum. 70(6), 2735 (1999)

D.B. Newell, S.J. Richman, P.G. Nelson, R.T. Stebbins, P.L. Bender, J.E. Faller, J. Mason, An ultralownoise, lowfrequency, six degrees of freedom active vibration isolator. Rev. Sci. Instrum. 68(8), 3211 (1997)

F. Matichard, et al., Advanced LIGO twostage twelveaxis vibration isolation and positioning platform. Part 1: Design and production overview. (2014). arXiv:1407.6377

F. Matichard, et al., Advanced LIGO twostage twelveaxis vibration isolation and positioning platform. Part 2: Experimental investigation and tests results. (2014). arXiv:1407.6324

S.M. Aston et al., Update on quadruple suspension design for Advanced LIGO. Class. Quant. Grav. 29(23), 235004 (2012). https://doi.org/10.1088/02649381/29/23/235004

R. Bassiri, K. Evans, K. Borisenko, M. Fejer, J. Hough, I. MacLaren, I. Martin, R. Route, S. Rowan, Correlations between the mechanical loss and atomic structure of amorphous TiO2doped Ta2O5 coatings. Acta Mater. 61(4), 1070–1077 (2013)

K. Evans, R. Bassiri, I. Maclaren, S. Rowan, I. Martin, J. Hough, K. Borisenko, Reduced density function analysis of titanium dioxide doped tantalum pentoxide. J. Phys. Conf. Ser. 371, 012058 (2012)

T. Hong, H. Yang, E.K. Gustafson, R.X. Adhikari, Y. Chen, Brownian thermal noise in multilayer coated mirrors. Phys. Rev. D87(8), 082001 (2013)

R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard et al., A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Class. Quant. Grav. 27, 084030 (2010). https://doi.org/10.1088/02649381/27/8/084030

N. Kondratiev, A. Gurkovsky, M. Gorodetsky, Thermal noise and coating optimization in multilayer dielectric mirrors. Phys. Rev. D 84, 022001 (2011). https://doi.org/10.1103/PhysRevD.84.022001

G.M. Harry, M.R. Abernathy, A.E. BecerraToledo, H. Armandula, E. Black et al., Titaniadoped tantala/silica coatings for gravitationalwave detection. Class. Quant. Grav. 24, 405–416 (2007). https://doi.org/10.1088/02649381/24/2/008

G.M. Harry, H. Armandula, E. Black, D.R.M. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M.M. Fejer, R. Route, S.D. Penn, Thermal noise from optical coatings in gravitational wave detectors. Appl. Opt. 45(7), 1569 (2006)

G.M. Harry, A.M. Gretarsson, P.R. Saulson, S.E. Kittelberger, S.D. Penn et al., Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quant. Grav. 19, 897–918 (2002). https://doi.org/10.1088/02649381/19/5/305

S. Rowan, J. Hough, D. Crooks, Thermal noise and material issues for gravitational wave detectors. Phys. Lett. A 347, 25–32 (2005). https://doi.org/10.1016/j.physleta.2005.06.055

V.B. Braginsky, S.P. Vyatchanin, Thermodynamical fluctuations in optical mirror coatings. Phys. Lett. A 312, 244–255 (2003). https://doi.org/10.1016/S03759601(03)004730

S.D. Penn, P.H. Sneddon, H. Armandula, J.C. Betzwieser, G. Cagnoli et al., Mechanical loss in tantala / silica dielectric mirror coatings. Class. Quant. Grav. 20, 2917–2928 (2003). https://doi.org/10.1088/02649381/20/13/334

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry et al., Thermooptic noise in coated mirrors for highprecision optical measurements. Phys. Rev. D 78, 102003 (2008). https://doi.org/10.1103/PhysRevD.78.102003

G. Harry, T. Bodiya, R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press. (2012). https://doi.org/10.1017/CBO9780511762314, https://www.cambridge.org/core/books/opticalcoatingsandthermalnoiseinprecisionmeasurement/705BC46F0FC70827BF8C986F07489A1B

J.C. Driggers, J. Harms, R.X. Adhikari, Subtraction of Newtonian noise using optimized sensor arrays. Phys. Rev. D 86, 102001 (2012). https://doi.org/10.1103/PhysRevD.86.102001

J. Harms, S. Hild, Passive Newtonian noise suppression for gravitationalwave observatories based on shaping of the local topography. Class. Quant. Grav. 31, 185011 (2014). https://doi.org/10.1088/02649381/31/18/185011

C. Caves, Quantum mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981). https://doi.org/10.1103/PhysRevD.23.1693

C.M. Caves, B.L. Schumaker, New formalism for twophoton quantum optics. 1. Quadrature phases and squeezed states. Phys. Rev. A31, 3068–3092 (1985). https://doi.org/10.1103/PhysRevA.31.3068

B.L. Schumaker, C.M. Caves, New formalism for twophoton quantum optics. 2. Mathematical foundation and compact notation. Phys. Rev. A31, 3093–3111 (1985). https://doi.org/10.1103/PhysRevA.31.3093

R. Loudon, Quantum limit on the Michelson interferometer used for gravitational wave detection. Phys. Rev. Lett. 47, 815–818 (1981). https://doi.org/10.1103/PhysRevLett.47.815

V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, 1999)

P. Hello, J. Vinet, Numerical model of transient thermal effects in high power optical resonators. J. Phys. (France) 51, 1267 (1990)

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, Heating by optical absorption and the performance of interferometric gravitational wave detectors. Phys. Rev. A 44, 7022–7036 (1991). https://doi.org/10.1103/PhysRevA.44.7022

R. Lawrence, D. Ottaway, M. Zucker, P. Fritschel, Active correction of thermal lensing through external radiative thermal actuation. Opt. Lett. 29, 2635 (2004)

P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, 2nd edn. (World Scientific, 2017). https://doi.org/10.1142/10116

J. Aasi, B.P. Abbott, R. Abbott, T. Abbott, M.R. Abernathy, K. Ackley et al., Advanced ligo. Class. Quantum Gravity 32, 074001 (2015). https://doi.org/10.1088/02649381/32/7/074001

B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

The LIGO Scientific Collaboration, et al., GWTC3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. (2021). arXiv eprints arXiv:2111.03606

R.A. Konoplya, Z. Stuchlík, A. Zhidenko, Echoes of compact objects: new physics near the surface and matter at a distance. Phys. Rev. D 99(2), 024007 (2019). https://doi.org/10.1103/PhysRevD.99.024007

A.L. Piro, B. Giacomazzo, R. Perna, The fate of neutron star binary mergers. Astrophys. J. Lett. 844(2), L19 (2017). https://doi.org/10.3847/20418213/aa7f2f

H. Miao, H. Yang, D. Martynov, Towards the design of gravitationalwave detectors for probing neutronstar physics. Phys. Rev. D 98, 044044 (2018). https://doi.org/10.1103/PhysRevD.98.044044

D. Martynov, H. Miao, H. Yang, F.H. Vivanco, E. Thrane, R. Smith, P. Lasky, W.E. East, R. Adhikari, A. Bauswein, A. Brooks, Y. Chen, T. Corbitt, A. Freise, H. Grote, Y. Levin, C. Zhao, A. Vecchio, Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 99, 102004 (2019). https://doi.org/10.1103/PhysRevD.99.102004

Ligo Scientific Collaboration, J. Abadie, B.P. Abbott, R. Abbott, T.D. Abbott, M. Abernathy, C. Adams et al., A gravitational wave observatory operating beyond the quantum shotnoise limit. Nat. Phys. 7(12), 962–965 (2011). https://doi.org/10.1038/nphys2083

S.E. Dwyer, G.L. Mansell, L. McCuller, Squeezing in gravitational wave detectors. Galaxies 10(2), 46 (2022). https://doi.org/10.3390/galaxies10020046

S. Chua, M. Stefszky, C. MmowLowry, B.C. Buchler, K. McKenzie, D.A. Shaddock, P.K. Lam, D.E. McClelland, Quantum squeezing in advanced gravitational wave detectors. Int. J. Mod. Phys. D 20(10), 2043–2049 (2011). https://doi.org/10.1142/S0218271811020159

C.M. Caves, B.L. Schumaker, New formalism for twophoton quantum optics. I. Quadrature phases and squeezed states. Phys. Rev. A 31(5), 3068–3092 (1985). https://doi.org/10.1103/PhysRevA.31.3068

B.L. Schumaker, C.M. Caves, New formalism for twophoton quantum optics. II. Mathematical foundation and compact notation. Phys. Rev. A 31(5), 3093–3111 (1985). https://doi.org/10.1103/PhysRevA.31.3093

H. Grote, K. Danzmann, K.L. Dooley, R. Schnabel, J. Slutsky, H. Vahlbruch, First longterm application of squeezed states of light in a gravitationalwave observatory. Phys. Rev. Lett. 110(18), 181101 (2013). https://doi.org/10.1103/PhysRevLett.110.181101

K. McKenzie, M.B. Gray, S. Goßler, P.K. Lam, D.E. McClelland, Squeezed state generation for interferometric gravitationalwave detection. Class. Quantum Gravity 23(8), S245–S250 (2006). https://doi.org/10.1088/02649381/23/8/S31

J. Aasi, J. Abadie, B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7(8), 613–619 (2013). https://doi.org/10.1038/nphoton.2013.177

M.S. Stefszky, C.M. MowLowry, S.S.Y. Chua, D.A. Shaddock, B.C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P.K. Lam, D.E. McClelland, Balanced homodyne detection of optical quantum states at audioband frequencies and below. Class. Quantum Gravity 29(14), 145015 (2012). https://doi.org/10.1088/02649381/29/14/145015

L. Barsotti, J. Harms, R. Schnabel, Squeezed vacuum states of light for gravitational wave detectors. Rep. Prog. Phys. 82(1), 016905 (2019). https://doi.org/10.1088/13616633/aab906

H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitationalwave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65(2), 022002 (2001)

S.L. Danilishin, F.Y. Khalili, H. Miao, Advanced quantum techniques for future gravitationalwave detectors. Living Rev. Relativ. 22(1), 2 (2019). https://doi.org/10.1007/s411140190018y

H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitationalwave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65(2), 022002 (2001). https://doi.org/10.1103/PhysRevD.65.022002

S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, K. Danzmann, R. Schnabel, Experimental characterization of frequencydependent squeezed light. Phys. Rev. A 71(1), 013806 (2005). https://doi.org/10.1103/PhysRevA.71.013806

E. Oelker, T. Isogai, J. Miller, M. Tse, L. Barsotti, N. Mavalvala, M. Evans, Audioband frequencydependent squeezing for gravitationalwave detectors. Phys. Rev. Lett. 116(4), 041102 (2016). https://doi.org/10.1103/PhysRevLett.116.041102

...Y. Zhao, N. Aritomi, E. Capocasa, M. Leonardi, M. Eisenmann, Y. Guo, E. Polini, A. Tomura, K. Arai, Y. Aso, Y.C. Huang, R.K. Lee, H. Lück, O. Miyakawa, P. Prat, A. Shoda, M. Tacca, R. Takahashi, H. Vahlbruch, M. Vardaro, C.M. Wu, M. Barsuglia, R. Flaminio, Frequencydependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitationalwave detectors. Phys. Rev. Lett. 124(17), 171101 (2020). https://doi.org/10.1103/PhysRevLett.124.171101

L. McCuller, C. Whittle, D. Ganapathy, K. Komori, M. Tse, A. FernandezGaliana, L. Barsotti, P. Fritschel, M. MacInnis, F. Matichard, K. Mason, N. Mavalvala, R. Mittleman, H. Yu, M.E. Zucker, M. Evans, Frequencydependent squeezing for advanced LIGO. Phys. Rev. Lett. 124(17), 171102 (2020). https://doi.org/10.1103/PhysRevLett.124.171102

E. Genin, M. Mantovani, G. Pillant, C.D. Rossi, L. Pinard, C. Michel, M. Gosselin, J. Casanueva, Vacuumcompatible lowloss faraday isolator for efficient squeezedlight injection in laserinterferometerbased gravitationalwave detectors. Appl. Opt. 57(32), 9705–9713 (2018). https://doi.org/10.1364/AO.57.009705

...S.S.Y. Chua, S. Dwyer, L. Barsotti, D. Sigg, R.M.S. Schofield, V.V. Frolov, K. Kawabe, M. Evans, G.D. Meadors, M. Factourovich, R. Gustafson, N. SmithLefebvre, C. Vorvick, M. Landry, A. Khalaidovski, M.S. Stefszky, C.M. MowLowry, B.C. Buchler, D.A. Shaddock, P.K. Lam, R. Schnabel, N. Mavalvala, D.E. McClelland, Impact of backscattered light in a squeezingenhanced interferometric gravitationalwave detector. Class. Quantum Gravity 31(3), 035017 (2014). https://doi.org/10.1088/02649381/31/3/035017

T. Isogai, J. Miller, P. Kwee, L. Barsotti, M. Evans, Loss in longstoragetime optical cavities. Opt. Express 21(24), 30114–30125 (2013). https://doi.org/10.1364/OE.21.030114

H.T. Cao, A. Brooks, S.W.S. Ng, D. Ottaway, A. Perreca, J.W. Richardson, A. Chaderjian, P.J. Veitch, High dynamic range thermally actuated bimorph mirror for gravitational wave detectors. Appl. Opt. 59(9), 2784–2790 (2020). https://doi.org/10.1364/AO.376764

V. Srivastava, G. Mansell, C. Makarem, M. Noh, R. Abbott, S. Ballmer, G. Billingsley, A. Brooks, H.T. Cao, P. Fritschel, D. Griffith, W. Jia, M. Kasprzack, M. MacInnis, S. Ng, L. Sanchez, C. Torrie, P. Veitch, F. Matichard, Piezodeformable mirrors for active mode matching in advanced ligo. Opt. Express 30(7), 10491–10501 (2022). https://doi.org/10.1364/OE.445088

T.C. Ralph, M.S. Taubman, A.G. White, D.E. McClelland, H.A. Bachor, Squeezed light from secondharmonic generation: experiment versus theory. Opt. Lett. 20(11), 1316–1318 (1995). https://doi.org/10.1364/OL.20.001316